Web Server Design

Lecture 10 — HTTP/2 and HTTP/3

Old Dominion University

Department of Computer Science
CS 431/531 Fall 2022

Sawood Alam <salam@cs.odu.edu>

2022-11-02

Original slides by Michael L. Nelson

HTTP/1.1 is awesome —
you can't argue with its deployed footprint.

But there are well-known performance
limitations.

HTTP is not a good fit for TCP

« TCP is designed for long-lived, bulk transfers
— High-handshake costs, TLS adds even more to startup costs
— HTTP requests are short and bursty

 Parallelism needed, but:

— Pipelining has problems with head-of-line-blocking, recovering
from failures

— More TCP connections, more client+server resources to
manage the sockets, bandwidth consumed by TCP overhead

— In practice, browsers limit to six concurrent connections

Parallelism |Is Needed Because of Page Bloat

Growth of Average Web Page Size and Number of
Objects -Jan 1995-July 2014

(Sources: Domenech 2007, Gomez 2008, Charzinski 2010, Souders 2014)
1800 +15 120
108

1600 +— —t=—Average Page Size (K) 101 1622
Average Number of Objects r 15290 @
2)
§« 1200 2 O
-4 64.7 } 1081 S
<. 1000 s
M Lo 2
— 49 92 2
] 800 Tas [
o 679 =
= 600 40 E
257 /0/507 <)
400 =
312.05 =20 @
-

] 3.7
0+ ——— 0

WebsiteOptimization.com 2014

From: https://www.webbloatscore.com/ See also: https://httparchive.org/reports/state-of-the-web

https://www.webbloatscore.com/
https://httparchive.org/reports/state-of-the-web

Parallelism Limits In Practice

Elements Resources | Network | Sources Timeline Profiles Audits Console PageSpeed

Name Method Status Type aes | oo | Time Start Time 302 ms | 453ms 604 ms. 755 ms
| localhost GET 200 text/htmi ilewe| 17ms| @D |

|| 0l.jpeg CET 202 image/jpeg 242ms i

| 02.jpeg GET 202 image/jpeg 243ms i

| 03.jpeg GET 202 image/jpeg 242ms &

| 04.jpeg GET 202 image/jpeg 24lms l -

|| 05.jpeg CET 202 image/jpeg 235ms i

| 06.jpeg GET 202 image/jpeg 235ms i

| 07.jpeg GET 202 image/jpeg 475ms] —
| 08.jpeg GET 202 image/jpeg 563ms i i
| 09.jpeg CET 202 image/jpeg 56lms i L
| 10.jpeg GET 202 image/jpeg 56lms i i
| 11,jpeg GET 202 image/jpeg 56lms = i
| 12.jpeg GET 202 image/jpeg 561lms I l

Figure 11-5. Staggered resource downloads due to six-connection limit per origin

From: https://hpbn.co/http1x/

https://hpbn.co/http1x/

HT TP Headers: Metadata >> Data

$> curl --trace-ascii - -d'{"msg":"hello"}' http://www.igvita.com/api

== Info: Connected to www.igvita.com
=> Send header, 218 bytes @)
POST /api HTTP/1.1

User-Agent: curl/7.24.0 (x86_64-apple-darwinl2.0) libcurl/7.24.0 ...

Host: www.igvita.com

Accept: */*

Content-Length: 15 @)

Content-Type: application/x-www-form-urlencoded
=> Send data, 15 bytes (©xf)

{"msg":"hello"}

<= Recv header, 134 bytes €)
HTTP/1.1 204 No Content

Server: nginx/1.0.11

Via: HTTP/1.1 GWA

Date: Thu, 20 Sep 2012 05:41:30 GMT
Cache-Control: max-age=0, no-cache

€ HTTP request headers: 218 bytes
© 15-byte application payload ({"msg":"hello"})
© 204 response from the server: 134 bytes

Here, 15 bytes of json + 352 bytes
of request and response headers

From: https://hpbn.co/http2/

https://hpbn.co/http2/

HTTP/1.1 Optimizations

Image Sprites

Send one large image of all flags, use CSS to “cut out” the flag you need
From: https://daniel.haxx.se/http2/

https://daniel.haxx.se/http2/

Inlining & Concatenation

* Inlining: send small images as base64

<img src="
ANSUhEUgAAAAUAAAAFCAYAAACNbyYb1AAAAHE1EQVQI12P4
//8/w38GIAXDIBKEODHxgljNBAAO9TXLOY4OHWAAAABIRU
5ErkJggg==" alt="Red dot" />

https://en.wikipedia.org/wiki/Data URI scheme

« Concatenation: put all of your .js/.css files into a single, large
Js/.css file
— Probably sends more than you need
— Small changes in one file means changes in the entire file

https://en.wikipedia.org/wiki/Data_URI_scheme

w‘cdn-expressen.se
ycdn-expressen.se

dn-expressen.se
dn-expressen.se
dn-expressen.se
dn-expressen.se
dn-expressen.se
dn-expressen.se
dn-expressen.se
dn-expressen.se
dn-expressen.se
dn-expressen.se
dn-expressen.se
dn-expressen.se
dn-expressen.se
dn-expressen.se

200 GET W 174pg

200 1740

20

20 z.cdn-expressen.se
20

20 x.cdn-expressen.se
20

20 y.cdn-expressen.se
20

20 w.cdn-expressen.se
20

20 y.cdn-expressen.se
20

20 z.cdn-expressen.se
20

2 Ww.cdn-expressen.se
20 T T 20000

200 GET 540.jpg

200 GET W 540.pg

200 GET = 174.jpg

200 GET Bl s20.pg

200 GET B 540.jpg

200 GET Bl 174.ipg

200 GET il 1743pg

200 GET & s20.pg

200 GET 3 174.pg

200 GET & 540.ipg

200 GET R 265.pg

200 GET M 265.ipg

200 GET ol 265.ipg

200 GET B 265.jpg

200 GET U original jpg

200 GET Bl original.jpg

200 GET I s520.pg

200 GET W 128.pg

200 GET ol 265.jpg

200 GET X 265.jpg

200 GET |4l 540.pg

200 GET B8 174.jpg

200 GET 8 174.jpg

200 GET il 174.pg

200 GET &% 174.jpg

200 GET & 174.pg

200 GET H174.pg

200 GET B 265 .jpg

Yedn-expressen.se
z.cdn-expressen.se
w.cdn-expressen.se
z.cdn-expressen.se
w.cdn-expressen.se
x.cdn-expressen.se
y.cdn-expressen.se
w.cdn-expressen.se
x.cdn-expressen.se
z.cdn-expressen.se
x.cdn-expressen.se
w.cdn-expressen.se
x.cdn-expressen.se
x.cdn-expressen.se
z.cdn-expressen.se
y.cdn-expressen.se
w.cdn-expressen.se
w.cdn-expressen.se
z.cdn-expressen.se
x.cdn-expressen.se
y.cdn-expressen.se
w.cdn-expressen.se
y.cdn-expressen.se
z.cdn-expressen.se
w.cdn-expressen.se
z.cdn-expressen.se
y.cdn-expressen.se
y.cdn-expressen.se
y.cdn-expressen.se

Jpeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
Ipeg
ipeg
ipeg
aif
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
jpeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg
ipeg

6.14 KB
4.19 KB
4.48 KB
4.58 KB
35.18 KB
12.97 KB
4.83 KB
9.54 KB
182.50 KB
5.66 KB
12.24 KB
6.85 KB
7.50 KB
2.85KB
50.87 KB
6.65 KB
6.09 KB
16.14 KB
19.89 KB
5.03 KB
21.27 KB
5.43 KB
6.08 KB
5.62 KB
20.32KB
6.66 KB
11.13KB
5.20 KB
6.93 KB
12.09 KB
5.92 KB
64.28 KB
21.88 KB
18.77 KB
3.34KB
13.00 KB
9.19 KB
13.13KB
5.66 KB
5.56 KB
5.07 KB
6.16 KB
6.57 KB
4.58 KB
11.49 KB

- 105 ms
|=+172 ms
1= 223 ms
|=173 ms
- 56 ms

| =165 ms
=56 ms

| =228 ms
| =285 ms
- 104 ms
| > 287 ms
| > 225 ms
=173 ms
| =227 ms
=188 ms
- 55 ms

/=196 ms
- 67 ms

-+ 112 ms
-+ 55 ms

- 108 ms
| > 237 ms
/=169 ms
- 105 ms
=241 ms
- 55 ms

/=237 ms
- 111 ms
| > 288 ms
| =249 ms
|2+ 167 ms
12192 ms
- 106 ms
- 112 ms
- 55 ms

| =245 ms
/=194 ms
- 108 ms
| =197 ms
- 55 ms

-+ 111 ms
-+ 59 ms

1= 210 ms
=12 ms

/=173 ms

Domain Sharding

Six connections per domain,
But with the overhead of additional
DNS lookups.

From: https://daniel.haxx.se/http2/

https://daniel.haxx.se/http2/

Evolution from SPDY to HTTP/2

*‘November 2009: Google begins work on SPDY to address performance limitations of
HTTP/1.1

*September 2010: SPDY supported in Chrome

«January 2011: SPDY deployed for all Google services

*March 2012: Twitter supports SPDY

*March 2012: Call for proposals for HTTP/2

«June 2012: NGINX supports SPDY

«July 2012: Facebook announces planned support for SPDY
*‘November 2012: First draft of HTTP/2 (based on SPDY)

*August 2014: HTTP/2 draft-17 and HPACK draft-12 are published
*August 2014: Working Group last call for HTTP/2

*February 2015: IESG approved HTTP/2 and HPACK drafts

‘May 2015: RFC 7540 (HTTP/2) and RFC 7541 (HPACK) are published

Collected from: https://en.wikipedia.org/wiki/SPDY, https://hpbn.co/http2/

https://en.wikipedia.org/wiki/SPDY
https://hpbn.co/http2/

Google Deprecates SPDY

“HTTP/2's primary changes from HTTP/1.1 focus on improved performance.
Some key features such as multiplexing, header compression, prioritization
and protocol negotiation evolved from work done in an earlier open, but
non-standard protocol named SPDY. Chrome has supported SPDY since
Chrome 6, but since most of the benefits are present in HTTP/2, it's time to
say goodbye. We plan to remove support for SPDY in early 2016, and to also
remove support for the TLS extension named NPN in favor of ALPN in
Chrome at the same time. Server developers are strongly encouraged to
move to HTTP/2 and ALPN.

We're happy to have contributed to the open standards process that led to
HTTP/2, and hope to see wide adoption given the broad industry
engagement on standardization and implementation.”

Quoted in: https://hpbn.co/http2/ Original: https://blog.chromium.org/2015/02/hello-http2-goodbye-spdy.html

https://hpbn.co/http2/
https://blog.chromium.org/2015/02/hello-http2-goodbye-spdy.html

High-level semantics of HTTP
don’t change in HTTP/2,
but the method of packaging and transport do.

Binary Framing Layer

Application (HTTP 2.0) HTTP 1.1
Host: www.example.org
_ _ Content-Type: application/json
Session (TLS) (optional) Content-Length: 15
{"msg”:"hello"}
Transport (TCP)
HTTP 2.0
Network (IP) HEADERS frame
—P DATA frame

Figure 12-1. HTTPR/2 binary framing layer

From: https://hpbn.co/http2/

https://hpbn.co/http2/

Streams, Messages, Frames

Connection
Stream 1
Request message
HEADERS frame (stream 1)
:method: GET
:path: /index.html
:version: HTTP/2.0
:scheme: https
user-agent: Chrome/26.0.1410.65
Response message
HEADERS frame (stream 1) DATA frame (stream 1)
:status: 200
:version: HTTP/2.0
<4 server: nginx/1.0.11 ... response payload...
vary: Accept-Encoding
Stream N .
—{ 1
<] {1

Figure 12-2. HTTP/2 streams, messages, and frames

Stream: bi-directional connection, with 1 or more
messages

Message: logically complete request or response

Frame: typed, atomic unit of communication

From: https://hpbn.co/http2/

https://hpbn.co/http2/

Request & Response Multiplexing

HTTP 2.0 connection
- | stream1 | stream3 | stream3 | stream 1 -
@ DATA | HEADERS DATA DATA |
stream 5
.. DATA
Client Server

Figure 12-3. HTTF/2 request and response multiplexing within a shared connection

Interleave multiple requests in parallel without blocking on any one

Interleave multiple responses in parallel without blocking on any one

Use a single connection to deliver multiple requests and responses in parallel

Remove unnecessary HTTP/1.x workarounds (such as concatenated files, image sprites, and domain sharding)

Deliver lower page load times by eliminating unnecessary latency and improving utilization of available network

capacity _ :
Note: frames cannot be received out of order!

From: https://hpbn.co/http2/

https://hpbn.co/http2/

Stream Dependencies & Weights

A gets % of bandwidth, B gets V4 C depends on D, service D D before C, C before D before C,C & E
A & B are dependent on the “root” first (weights trumped by A & B, weight A & B equally Before A & B,
stream (i.e., no dependencies) dependency) as before weight A & B as before
implicit root . * * * *
P < v
stream A B D
weight 12 4 1

o Q)e— = 0O

o Q)e—{-0)u---
-

0004/

A/ \B | A/ \‘B

Figure 12-4. HTTF/2 stream dependencies and weights
From: https://hpbn.co/http2/

https://hpbn.co/http2/

Server Push: 1 Request, N Responses

HTTP 2.0 connection
stream 4 steam1 | stream4 | stream2 | | #
frame1 | ™ framen promise promise

stream 1
.............. ERM T]

¢4

stream 1
A2 stream 1. /page.html (client request)
stream 2: /script.js (push promise)
stream 4: /style.css (push promise)
See discussion of HTTP/2 push in:
Figure 12-5. Server initiates new streams (promises) for push resources https://daniel.haxx.se/blog/2018/11/11/http-3/

Conceptually similar to inlining, rel="preload”, rel="prefetch”, etc.
Can only push with same-origin policy.

From: https://hpbn.co/http2/

https://hpbn.co/http2/
https://daniel.haxx.se/blog/2018/11/11/http-3/

Header Repetitiveness Allows Compression

Request #1 e Request #2
:method GET Implci :method GET
:scheme https :scheme https

implicit

:host | example.com it :host | example.com

:path | /resource | ” :path [/new_resource

accept| image/jpeg |mp_||C|t’ accept | image/jpeg
implicit

user-agent | Mozilla/5.0 ... ——»{ user-agent | Mozilla/5.0 ...

HEADERS frame (Stream 1) HEADERS frame (Stream 3)

:method: GET :path: /new_resource
:scheme: https
‘host: example.com
:path: /resource
accept: image/jpeg
user-agent: Mozilla/5.0 ...

Figure 12-6. HPACK: Header Compression for HTTP/2

Note: headers beginning with “:” are “pseudo-headers” (RFC 7540, 8.1.2.1); or “things-that-should-have-been-headers-in-HTTP/1.1”
Pseudo-headers have to be listed before real headers. From: httDS://thn.CO/httDZ/

https://hpbn.co/http2/

HTTP/1.1

GET /page HTTP/1.1

Host: server.example.com

Connection: Upgrade, HTTP2-Settings
Upgrade: h2c @

HTTP2-Settings: (SETTINGS payload) t’

HTTP/1.1 200 OK €)
Content-length: 243
Content-type: text/html

(... HTTP/1.1 response ...)

(or)
HTTP/1.1 101 Switching Protocols (’
Connection: Upgrade

Upgrade: h2c

(... HTTP/2 response ...)

© |Initial HTTP/1.1 request with HTTP/2 upgrade header
© Base64 URL encoding of HTTP/2 SETTINGS payload
© Server declines upgrade, returns response via HTTP/1.1

© Server accepts HTTP/2 upgrade, switches to new framing

HTTP/2 Upgrade

Note:
“h2” = HTTP/2 over TLS
“h2c” = HTTP/2 over clear text TCP

From: https://hpbn.co/http2/

https://hpbn.co/http2/

9 Byte Frame Header

Bit +0..7 +8..15 +16..23 +24..31
0 Length Type
32 Flags

40

Stream |dentifier

Frame Payload

Figure 12-7. Common 9-byte frame header

Note: frames cannot be received out of order! Stream id, but not frame id.

Technically, the Length field allows payloads of up to 924 bytes (~16MB) per frame.
However, the HTTP/2 standard sets the default maximum payload size of DATA frames to

94 bytes (~16KB) per frame and allows the client and server to negotiate the higher value.
Bigger is not always better: smaller frame size enables efficient multiplexing and minimizes

head-of-line blocking.

From: https://hpbn.co/http2/

Header Types:

*DATA - Used to transport HTTP message bodies

*HEADERS - Used to communicate header fields for a stream

*PRIORITY - Used to communicate sender-advised priority of a stream
*RST_STREAM - Used to signal termination of a stream

*SETTINGS - Used to communicate configuration parameters for the connection
*PUSH_PROMISE - Used to signal a promise to serve the referenced resource
*PING - Used to measure the roundtrip time and perform "liveness" checks
*GOAWAY - Used to inform the peer to stop creating streams for current connection
*WINDOW_UPDATE - Used to implement flow stream and connection flow control
*CONTINUATION - Used to continue a sequence of header block fragments

https://hpbn.co/http2/

Example Binary HTTP/2 Request

v HyperText Transfer Protocol 2
v Stream: HEADERS, Stream ID: 1, Length 20
[Length: 20

o Type: HEADERS (1)

R | v Flags: 0x@5

v 11| [T 1 = End Stream: True

g .1.. = End Headers: True

© en @ = Padded: False

& «.0. = Priority: False

g 00.0 ..0. = Unused: 0x00

£ @uvs saun wuas ssas aess ssas sass saas = Reserved: 0x00000000
o .000 0000 0000 0000 0000 0000 0000 0001 = Stream Identifier: 1

[Pad Length: 0]
Header Block Fragment: 8682418aa0e41d139d09b8f01e078453032a2f2a
[Header Length: 100]
Header: :scheme: http
Header: :method: GET
Header: :authority: localhost:8080
Header: :path: /
Header: accept: */*
Name Length: 6
Name: accept
Value Length: 3
Value: */x
Representation: Literal Header Field with Incremental Indexing — Indexed Name
ES Index: 19

4vVvVYVvVYVYVYyYy

HPACK encoded headers

Figure 12-8. Decoded HEADERS frame in Wireshark

From: https://hpbn.co/http2/

https://hpbn.co/http2/

HTTP/3 Network Stack

HTTP/2 optimizes within TCP context (e.g., binary, streams & frames),
HTTP/3 replaces TCP

HTTP/3
Quic

TCP-like congestion control,
loss recovery

From: https://daniel.haxx.se/blog/2018/11/26/http3-explained/

https://daniel.haxx.se/blog/2018/11/26/http3-explained/

HTTP/3

« “HTTP-over-QUIC” was renamed to “HTTP/3” (Nov 2018)
— https://daniel.haxx.se/blog/2018/11/11/http-3/

« HTTP/3 became Standard Track RFC in June 2022
— https://datatracker.ietf.org/doc/html/rfc9114
— Deployment is growing gradually

* Major changes:

— Streams are moved from the HTTP layer to the QUIC layer

« HTTP/2 fixes HTTP head-of-line blocking, but not TCP head-of-line blocking
(i.e., streams in TCP can still be held up by dropped TCP packets)

— Since streams are independent, header compression changes
— There is no clear-text version of HTTP/3 (integral TLS 1.3)
— QUIC has faster handshakes than TCP + TLS

https://http3-explained.haxx.se/

https://daniel.haxx.se/blog/2018/11/11/http-3/

